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Mortality Change among Less Educated Americans†

By Paul Novosad, Charlie Rafkin, and Sam Asher*

Measurements of mortality change among less educated Americans 
can be biased because the least educated groups (e.g., dropouts) 
become smaller and more negatively selected over time. We show that 
mortality changes at constant education percentiles can be bounded 
with minimal assumptions. Middle-age mortality increases among 
non-Hispanic Whites from 1992 to 2018 are driven almost entirely by 
the bottom 10 percent of the education distribution. Drivers of mor-
tality change differ substantially across groups. Deaths of despair 
explain most of the mortality change among young non-Hispanic 
Whites, but less among older Whites and non-Hispanic Blacks. Our 
bounds are applicable in many other contexts. (JEL I12, I26, J15)

Mortality rates among non-Hispanic Whites without college degrees have 
increased substantially over the last 20 years (Meara, Richards, and Cutler 

2008; Cutler and Lleras-Muney 2010b; Cutler et al. 2011; Olshansky et al. 2012; 
Case and Deaton 2015, 2017). While widely publicized, this fact by itself is diffi-
cult to interpret because overall education levels have also risen during this time 
period; the share of 50–54-year-old women without a college degree, for example, 
was 63 percent in 1992 and 36 percent in 2018. The average person without a col-
lege degree occupies a lower position in both the educational and the socioeconomic 
distribution today than in the past. It is therefore not necessarily surprising that 
people at a fixed low level of education are less healthy today compared with those 
at the same level in earlier decades (see Figure 1). If education levels are rising, it 
is theoretically possible for the mortality rate to be lower at every percentile in the 
education distribution, but to be higher at every education level.1

1 A similar phenomenon is described by the well-known college swipe, “If the worst student at college X went 
to (inferior college) Y, it would raise the average intelligence of both schools.”
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There are three possible interpretations of rising mortality among non-Hispanic 
Whites without college degrees. Each has a substantially different policy implica-
tion. First, this result could be nothing more than an artifact of shifts in the education 
distribution, with no changes in the underlying relationship between education per-
centile and mortality. Second, mortality could be rising uniformly among individu-
als in the bottom half of the education distribution. Third, mortality could be rising 
substantially at the very bottom of the education distribution, with fewer changes or 
even improvements in the percentiles reflecting high school graduates. In this paper, 
we develop new methods to distinguish between these scenarios and show that the 
third interpretation is the one most supported by the evidence.

This selection bias in estimates of mortality change at fixed education levels has 
been a major barrier to the study of disparities in death rates, not least because 

Figure 1. Mortality versus Education Rank, Age 50–54, 1992–1994 to 2016–2018

Notes: “White” refers to non-Hispanic White and “Black” to non-Hispanic Black. The figure shows change in mor-
tality and average education rank for individuals aged 50–54 at different levels of education, from 1992–1994 to 
2016–2018. Each point represents the average number of deaths per 100,000 people among people with one of four 
levels of education: No High School, High School, Some College, and a B.A. or Higher. The ​x​ coordinate of each 
point represents the average education percentile among people with the given level of educational completion. For 
example, a 50-year-old White woman with a high school education was at the thirty-ninth percentile of the educa-
tion distribution in 1992–1994 and at the twenty-second percentile in 2016–2018. 

Sources: ACS, CPS, NCHS
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education is one of the only measures of socioeconomic status that is recorded in 
publicly available vital statistics data. Some researchers have argued that the bias is 
so large that estimates of mortality change by education level are effectively mean-
ingless (Dowd and Hamoudi 2014, Bound et al. 2015, Currie 2018). Other research-
ers have limited analysis to population subsets where education has not substantially 
changed (Case and Deaton 2015, 2017). Similar challenges arise in studies of edu-
cational gradients in fertility, birth outcomes, and disability, as well as in the study 
of assortative mating and intergenerational mobility (Cutler and Lleras-Muney 
2010a; Aizer and Currie 2014; Greenwood et al. 2014; Bertrand et al. 2021; Asher, 
Novosad, and Rafkin 2022).

In principle, the selection bias can be addressed by studying mortality in fixed 
percentile ranges of the education distribution, for example, in the bottom 10 per-
cent. This approach holds constant the size and relative rank of each education 
bin over time. While calculating mortality in fixed education percentiles has been 
suggested before (Bound et  al. 2015), doing so is not trivial, because education 
levels are inherently lumpy, especially as reported in standard mortality datasets. 
For example, if education is bottom-coded at the twentieth percentile (as in 1992, 
where 20 percent of women in some cohorts are high school dropouts), the mortal-
ity rate at the tenth education percentile cannot be point-estimated without strong 
assumptions.

This paper introduces a new partial identification method that addresses this con-
cern. We show that outcomes conditional on arbitrary education ranks can at best be 
bounded. We treat the measurement of mortality ​y​ at a given education rank ​x​ as an 
interval data problem, where the education rank is only observed to lie within some 
bin ​​[​x​ k​​, ​x​ k+1​​]​​ of the rank distribution. Extending the approach of Manski and Tamer 
(2002), we show that ​E​(y | x  ∈ ​ [a, b]​)​​ can be sharply and meaningfully bounded for 
arbitrary values of ​a​ and ​b​.2 Our approach requires only two assumptions. First, we 
assume that there exists a latent education rank, which is only coarsely observed in 
the education data; this assumption follows directly from a standard human capital 
model. Second, we assume that the mortality rate is weakly decreasing in the latent 
education rank; this assumption is supported by theory and empirical evidence. We 
show that bounds can be further tightened by disallowing kinks or discrete jumps in 
the education-rank function; this third assumption also makes it possible to loosen 
the monotonicity assumption.3

Using this partial identification approach, we document changes in mortality 
from 1992–1994 to 2016–2018 among the US population aged 25–69, in con-
stant education percentile bins. We focus in particular on two domains where  
researchers have noted deteriorating outcomes: (i) mortality change in the bottom 
half of the education distribution; and (ii) changes in deaths from poisoning, suicide 

2 Our key innovation to the setup in Manski and Tamer (2002) is that we develop bounds on ​E​(y | x  ∈  ​[a, b]​)​​ 
when the latent distribution of ​x​ is known. In the case of education rank data, the latent distribution is uniform by 
construction. We also develop general bounds on ​E​(y | x  ∈  ​[a, b]​)​​ when ​x​ is not necessarily uniform; these bounds 
may be useful in other cases, e.g., top-coded income data that are assumed to follow a Pareto distribution.

3 A curvature constraint is not central to our results. We show in online Appendix Section D that our central 
results hold using the first two assumptions alone; however, adding plausible structural assumptions yields tighter 
bounds. Allowing discrete jumps or kinks at major education boundaries (like high school or college completion) 
also has no material effect on the results.
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and chronic liver disease, described by earlier researchers as “deaths of despair” 
(Case and Deaton 2015, 2017).

We have three primary findings. First, among middle-aged non-Hispanic White 
(hereafter referred to as White) men and women, the group most widely discussed 
in the recent literature, mortality increases are driven almost entirely by the bottom 
10  percent of the own-gender education distribution (the part of the distribution 
represented by high school dropouts in 2018).4 From 1992–1994 to 2016–2018, 
age-adjusted mortality for Whites in the least educated 10  percent has risen by 
69–112 percent for women and 47–67 percent for men (2.2–3.2 percent and 1.6–
2.2 percent per year, respectively). Mortality in percentiles 10–45 (approximately 
high school completers in 2018) is rising for both White men and women under age 
50, but is flat or declining at higher ages where most deaths occur. The mortality 
increases described by Case and Deaton (2015, 2017) are thus both more severe and 
more focused in a narrow population subgroup than has previously been recognized.

Second, non-Hispanic Blacks have experienced large improvements in mortality 
in all education groups except for the least educated 10 percent. In the least edu-
cated 10 percent, Black women’s mortality has risen 9–17 percent from 1992–1994 
to 2016–2018, while Black men’s mortality change has been very close to zero. 
This has led to a substantial convergence between Black and White outcomes at the 
bottom of the education distribution. Conditional upon being in the least educated 
10 percent of the national distribution, White men over the age of 50 in 2016–2018 
have higher mortality than similarly-aged Black men. White women in the least 
educated 10 percent have higher mortality than similarly-educated Black women in 
2016–2018. In nearly all other education-age groups, White men and women have 
lower mortality than Black men and women.

A single proximate cause cannot explain these divergent death rates. The change 
in deaths from despair, which has been widely discussed in prior research and in the 
media, accounts for a large share of mortality increases for young Whites, but a very 
small share of rising mortality among older Whites and very little of the divergent 
mortality rates of Blacks. Further, deaths of despair have increased more uniformly 
across the education distribution than deaths from other causes. The least educated 
middle-aged Whites, in particular, are now at higher risk of dying from cancer, heart 
diseases and respiratory diseases, among other causes, even as mortality from these 
causes has declined sharply for those outside of the bottom 10 percent. Note that 
earlier unadjusted estimates of these mortality changes were particularly difficult to 
interpret for women, for whom education has risen considerably more than among 
men, creating a larger possible selection bias.

A long prior literature relies upon education as a proxy of socioeconomic status 
to study mortality change, both because of its wide availability in the data, and 
because it is a marker of permanent rather than transitory socioeconomic status.  
Olshansky et  al. (2012) noted rising mortality rates among high school dropouts 

4 Throughout the paper, we take “Whites in the bottom 10 percent” to mean “Whites who are in the bottom 
10 percent of the own-gender national education distribution” (where ranks pool across all races). We discuss in 
Section III why this is a more useful categorization than “Whites in the bottom 10 percent of the education distribu-
tion of Whites.” Nevertheless, when we employ the latter definition, we find results that are broadly consistent with 
our findings here (online Appendix Figure D2).
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from 1990 to 2008, but this work attracted debate because it did not adjust for the 
substantial increase in the negative selection associated with being a dropout over the 
sample period. Case and Deaton (2015, 2017) justified ignoring the selection bias in 
mortality change by focusing on population subgroups for whom education levels 
had not changed substantially; however, they did not look specifically at outcomes 
among high school dropouts exactly because of the selection bias addressed in our 
paper. Meara, Richards, and Cutler (2008); Bound et al. (2015); Hendi (2015); and 
Leive and Ruhm (2021) use an adjustment for selection bias that is implicitly based 
on stricter (and in our view, less plausible) assumptions that underestimates mortal-
ity change at the bottom of the distribution.5

Our finding of dramatically rising mortality in the bottom 10 percent broadly sup-
ports the earlier selection-unadjusted findings of Olshansky et al. (2012) and Sasson 
(2016): the mortality increases at the bottom of the education distribution prove to 
be large, even after removing substantial selection bias. We find a larger decline at 
bottom of the distribution than Hendi (2015, 2017), both because of our approach 
to selection bias, and because we use the much larger vital statistics data which are 
better suited to detect mortality changes in small groups like high school dropouts 
(Sasson 2017).

Several other recent papers document the relationship between socioeconomic 
status and mortality. Currie and Schwandt (2016a, b) study differences in mortal-
ity across counties, finding, like us, that changes in mortality inequality are highly 
heterogeneous across age, race, and place. They show that mortality inequality 
across space is falling between Blacks and Whites and among younger individuals 
(especially children), but rising among older adults. They also document dramatic 
declines in mortality among Black men. Our findings confirm this result among 
Black men in the most educated 90 percent. But we find that middle-aged Black 
men in the least educated 10 percent have experienced mortality increases, although 
these increases are minor compared with similarly educated Whites.

Chetty et al. (2016) use deaths as reported in tax records to describe changes in 
mortality throughout the income distribution. While the study of mortality using tax 
records is an important innovation, vital statistics are likely to remain valuable as 
sources of information on mortality because they record cause of death in detail and 
because they are publicly available. Our work makes it possible to use education as a 
marker of socioeconomic status in the vital statistics data, which is important given 
that so few other predictors of socioeconomic status are recorded.

In a related approach, Goldring, Lange, and Richards-Shubik (2016) derive a 
one-tailed statistical test to examine whether the mortality gradient in education is 
changing over time. Like us, they assume that: (i) there exists a latent education rank 
distribution; and (ii) mortality is monotonically decreasing in the latent education 
rank. They conclude that the education gradient is getting steeper (as do we), but 
their approach does not generate estimates of mortality change.

In addition to the empirical findings, this paper introduces a new methodology 
to tighten the CEF bounds of Manski and Tamer (2002) in contexts with known 

5 We compare their approach to ours in Section II and online Appendix Section C.3.
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conditioning distributions (like ranks, which are uniform by construction). In the 
simplest case without curvature constraints, we provide analytical bounds that are 
readily calculated. We also provide a numerical framework for tightening bounds 
with arbitrary structural constraints, such as the curvature constraint we employ in 
our main results.6 Our methodology may be of use in interval-censoring contexts as 
diverse as bond ratings, top-coded incomes, and Likert scales. It is especially useful 
when studying education, because education data remain interval-censored in rank 
terms even as granular administrative data become available for other variables, 
such as income. As a result, these bounds may be applied whenever the researcher 
wishes to study trends in a given outcome over time by education group.

We have posted both unadjusted and constant-percentile mortality estimates for 
all ages and groups with the manuscript, which we hope will be useful for other 
researchers interested in studying US mortality change. Code to calculate bounds 
on mortality in constant percentile groups given raw education data is also posted 
online.7

I.  Data Sources

We briefly summarize the data construction process and provide more details in 
online Appendix Section B.

Death records from 1992–2018 were obtained from the US National Vital Statistics 
System of the NCHS (National Center for Health Statistics 1993–2019). Mortality 
rates (deaths per 100,000 people) were obtained by dividing the number of deaths 
in each age, race, gender and education cell by the population total from the Current 
Population Survey (CPS; United States Census Bureau 1993–2019b). We code ages 
in 5-year bins to mitigate bias from changing age within bins over time (Gelman and 
Auerbach 2016; Case and Deaton 2017). Education could be consistently matched 
across datasets in four groups: (i) less than a high school degree, (ii) high school 
degree/ GED, (iii) some college, and (iv) a bachelor’s degree or more.8 Annual esti-
mates were pooled into three-year bins. Following earlier work, estimates are pre-
sented separately for men and women, and for non-Hispanic Blacks and Whites. 
Results are not shown for Hispanics, because their higher in- and out-migration over 
the sample period make mortality change among Hispanics more difficult to inter-
pret (Markides and Eschbach 2005). Mortality rates closely match those in other 
recent studies (Case and Deaton 2015, 2017).

Causes of death were partitioned into the following subgroups: cancers, heart 
diseases, deaths of despair, injuries, and other diseases. Deaths of despair are deaths 
from poisoning, suicide, and alcoholic liver diseases and cirrhosis (Kochanek, Arias, 
and Bastian 2016; Case and Deaton 2017); we exclude suicides from injuries. More 
detail on the distribution of deaths is reported in online Appendix Table A1.

6 Our method is also easily generalized to measure other conditional parameters, like a median or other percen-
tile of the outcome distribution.

7 Stata and Matlab code for the bounding algorithm and replication code for this paper is available on GitHub at 
https://github.com/devdatalab/paper-nra-mortality.

8 We aggregate the small share of people who attain no high-school education with people who attain some 
high-school education but do not drop out. See online Appendix Section B for details.

https://github.com/devdatalab/paper-nra-mortality
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The strength of the NCHS data is its large number of observations and precision. 
The weakness is that mortality rates can only be measured in NCHS by dividing 
deaths by the population in a different dataset, creating risk of bias if the datasets 
have different biases in covariate measurement. We address many of these poten-
tial biases in the robustness section of the paper, but concerns cannot be ruled out 
entirely. The best alternative measures of US mortality come from the National 
Health Interview Survey (NHIS), which matches individuals to mortality records, 
eliminating division bias. The weakness of the NHIS is that it has too small a sample 
to measure mortality change among less educated groups with much precision, as 
we show in online Appendix Section D.6.

II.  Methods: Bounding Mortality in Constant Education Percentile Bins

The Selection Problem.—When the level of education in the population rises, 
individuals at each level of education mechanically occupy a lower set of ranks in 
the education distribution. For example, among 50–54-year-old women, dropouts 
were approximately the bottom 19 percent in 1992 and the bottom 8 percent in 2018. 
The people who drop out of high school in 2018 may be more negatively selected 
than in 1992. If mortality rises among dropouts from 1992 to 2018, one might worry 
that such negative selection, rather than worsening health outcomes, drives the mor-
tality increase. In fact, mortality can rise at each level of education even if the mor-
tality rate in the population is constant. This statistical paradox is known as the Will 
Rogers Phenomenon or “stage migration” in the medical literature (Feinstein, Sosin, 
and Wells 1985).

One can resolve this problem by measuring mortality within a constant range of 
education percentiles (e.g., percentiles 0–10 or 0–50) instead of at fixed education 
levels (Bound et  al. 2015). Using education ranks holds the relative size of the 
group constant over time; the bottom 10 percent is no more negatively selected (in 
relative terms) in 1992 than in 2018. But it is not trivial to implement this solution 
because education is typically observed in coarse categories that cover many per-
centiles. How does one calculate mortality among the least educated 10 percent, if 
the bottom 15 percent are bottom-coded as high school dropouts?

We treat this as an interval data problem, where the latent education rank is only 
observed to lie within a set of coarse bins. We present a method that bounds the 
conditional expectation of mortality at a given percentile and in percentile ranges 
(e.g., average mortality rates in percentiles 0–10). We introduce and discuss these 
new bounds in the context of our empirical application, but they are valid in many 
other contexts with interval-censored conditioning variables.

We first describe the method intuitively and then formalize it. Figure 2 pres-
ents a graphical example, continuing to focus on women ages 50–54. For these 
women, mortality in 2016–2018 is known to be 800 deaths per 100,000 in percen-
tiles 0–8 (high school dropouts) and 535 deaths in percentiles 8–37 (high school 
completers). Suppose that we wish to bound the mortality rate in percentiles 0–10 
(panel A). Our key assumption, formalized below, is that mortality is weakly 
decreasing in the latent education rank.
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Define ​​μ​ a​ 
b​​ as the average mortality between ranks ​a​ and ​b​. Mortality in percentiles 

0–10 (i.e., ​​μ​ 0​ 
10​​) is a weighted mean of mortality in percentiles 0–8 ​​(​μ​ 0​ 

8​)​​, which is 
known, and mortality in percentiles 8–10 ​​(​μ​ 8​ 

10​)​​, which is unknown. We can bound ​​
μ​ 8​ 

10​​ from above: it must be weakly lower than ​​μ​ 0​ 
8​​ (​= 800​), or else monotonicity 

Figure 2. Calculating the CEF of Mortality Given Education Rank
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Figure 2. Calculating the CEF of Mortality Given Education Rank (continued )

Notes: Figure 2 provides a graphical description of the calculation of the bounds on ​​μ​ a​ 
b​​ in two scenarios. The data 

are from women aged 50–54 in 2016–2018. The vertical lines show the rank bin boundaries for each education bin 
for this group. The points show the mean mortality in each bin. The first two panels show the calculation of ​​μ​ 0​ 

10​​ and 
the following two panels show the calculation of ​​μ​ 10​ 

40​​. In panel C, the upper bound of ​​μ​ 10​ 
37​​ cannot exceed the value 
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10​  > ​ μ​ 10​ 
37​​. The lower bound cannot be below 515, or else ​​μ​ 8​ 
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8​​ to fit the bin mean, thus violating monotonicity. 

Source: NCHS
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would be violated. We can also bound ​​μ​ 8​ 
10​​ from below: ​​μ​ 8​ 

10​​ must be weakly larger 
than ​​μ​ 8​ 

37​​ (​= 535​), or else monotonicity cannot hold between ​​μ​ 8​ 
10​​ and ​​μ​ 10​ 

37​​. Taking the 
weighted mean of ​​μ​ 0​ 

8​​ and the bounds on ​​μ​ 8​ 
10​​, we can infer that mortality in the least 

educated 10 percent (​​μ​ 0​ 
10​​) must be in the interval ​​[747, 800]​​ (panel B of Figure 2).9

The previous example describes the simplest possible case. There are more com-
plex cases where the bounds are not simply weighted averages of the adjacent bin 
means. Panels C and D of Figure 2 demonstrate such a case, in the setting of calcu-
lating ​​μ​ 10​ 

40​​. Here, the bounds also take into account the following additional logic. 
We discuss the case of forming lower bounds. Because ​​μ​ 8​ 

37​​ is known (​= 535​), ​​μ​ 10​ 
37​​ 

must be relatively tightly bounded. The highest value of ​​μ​ 8​ 
10​​ permits the lowest value 

of ​​μ​ 10​ 
37​​ while still meeting the constraint that ​​μ​ 8​ 

37​  =  535​. Monotonicity implies that ​​
μ​ 8​ 

10​​ cannot exceed 800 (since that is the bin mean in ranks 0 to 8). Then, in order that ​​
μ​ 8​ 

37​  =  535​, it must be the case that the lower bound for ​​μ​ 10​ 
37​​ is 515.10 Applying simi-

lar logic to obtain bounds on ​​μ​ 37​ 
40​​, we take the weighted mean of the lower bounds on ​​

μ​ 10​ 
37​​ and ​​μ​ 37​ 

40​​ to obtain a lower bound on ​​μ​ 10​ 
40​​ of 495. Similar logic gives upper bounds.

The key intuition behind these bounds is that mortality in an arbitrary rank 
range is a weighted mean of known and partially identified values. If the weight 
on known values is high or the partially identified values are tightly bounded, 
then mortality in the rank range can be tightly bounded. The bounds can be tight-
ened further with additional structural assumptions if desired, as we demonstrate  
below.

A. Assumptions

Assumption  1 (Latent Education Ranks).—We have implicitly assumed in the 
narrative thus far that there exists a continuous latent education rank distribution, 
which is partitioned into discrete intervals by the observed education levels. For 
instance, if 10 percent of people are high school dropouts, then these people occupy 
distinct (continuous) ranks 0 through 10. This assumption arises out of a standard 
human capital investment model where schooling costs are convex and individual 
educational attainment is determined by individual-specific cost and benefit shifters 
(Card 1999), and is required for the selection adjustments used in the prior mortality 
literature (Hendi 2015; Cutler et al. 2011; Bound et al. 2015; Goldring, Lange, and 
Richards-Shubik 2016). A person who is highly ranked within her bin ( for instance, 
the highest-ranked high school dropout) is a person who would have attained a 
higher level of education if the cost were only marginally lower or the benefit to 
them only marginally higher. Consider an example where two individuals ​A​ and ​B​ 
are identical except ​A​ has a lower discount rate, which raises her demand for educa-
tion. ​A​ and ​B​ may obtain the same level of education because years of education are 
lumpy. However, ​A​ may be right at the margin of attaining a higher level of educa-
tion and ​B​ may be right at the margin of attaining a lower level of education. If the 

9 The upper bound of ​​μ​ 0​ 
10​​ is 800. The lower bound of ​​μ​ 0​ 

10​​ is ​0.8 × 800 + 0.2 × 535  =  747​.
10 That value for the lower bound satisfies the equation ​​ 2 _ 29 ​ × 800 + ​ 27 _ 29 ​ × LowerBound  =  535​.
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discount rate also affects health-seeking behavior, then we would expect ​A​ to have 
lower mortality risk than ​B​, even though their levels of education are the same.11

Assumption 2 (Monotonicity).—We assume that mortality rates are non-increasing 
in latent education percentile. This assumption is suggested by the standard human 
capital model above, in that many factors correlated with socioeconomic status are 
expected to raise educational attainment and improve health; the direct effect of 
education on health is also expected to be positive. This assumption has been made 
either implicitly or explicitly by other researchers attempting to control for the rank 
change problem that we address in this paper (Cutler et al. 2011; Bound et al. 2015; 
Hendi 2015; Goldring, Lange, and Richards-Shubik 2016). The assumption is sup-
ported by empirical evidence that mortality and health are consistently decreasing in  
levels and in years of education in the United States and Europe (Pappas et al. 1993; 
Mackenbach et al. 2003; Meara, Richards, and Cutler 2008; Cutler and Lleras-Muney 
2010b).  These papers provide evidence of monotonically decreasing mortality  
across education bins; our assumption further imposes that mortality is non- 
increasing in rank within education bins. Further corroborating evidence comes 
from Chetty et al. (2017 ), who show that mortality is monotonically decreasing in 
granular income ranks.12

Importantly, while we invoke this assumption in the main results, our qualitative 
findings are similar if we loosen this restriction or replace it with an alternative 
structural assumption (online Appendix Section D).

B. Formalization of Bounds on the Interval-Censored CEF

Our approach extends Manski and Tamer (2002), who provide bounds on an 
interval-censored CEF with an unknown distribution. We show that (i) the Manski 
and Tamer (2002) bounds can be improved upon substantially in our context by 
recognizing the distribution of the conditioning variable; and (ii) the bounds on the 
mean value of the CEF in some interval may be much tighter than the bounds on the 
CEF at a given point. Finally, we present a numerical framework that permits the 
inclusion of arbitrary structural assumptions which may further tighten the bounds. 
The reader who is not interested in the details of the formalization may skip to 
Section IID.

Consider random variables ​y​ and ​x​. In our setting, the variable ​y​ is the binary 
variable indicating whether an individual survives (survival ​ =  1​, death ​ =  0​), and ​
x​ is the latent education rank. Although we generalize ​x​, in the setting where ​x​ cor-
responds to ranks, we can think of ​x​ as belonging to the interval ​​[0, 100]​​, the set 

11 Note that we are not making causal claims about the relationship between education rank and mortality. 
Rather, like the prior literature, we use education as a proxy for socioeconomic status that is readily available in 
mortality data. Our exercise is analogous to measuring mortality at a given income percentile, which is understood 
to be a meaningful measure even though the income level at that percentile may change over time. If the education 
level has a causal effect on health (e.g., through knowledge gain), then we might expect survival to improve at edu-
cation ranks which reflect higher levels of education in 2018 than in 1992; our framework allows for this possibility.

12 We discuss some empirical exceptions to this general monotonicity in groups that we study in Section III.
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of education ranks. Define the average survival rate ​Y​(x  =  i)​  =  E​(y | x  =  i)​​ for 
particular latent education rank ​i​.13

Assume that ​x​ is only observed to lie in one of ​K​ closed intervals that are 
non-overlapping (except at endpoints) and cover the distribution of ​x​. Each inter-
val (or “bin”) is indexed by ​k  ∈ ​ {1, … , K}​​ and we write that interval ​k​ is the set  
​​[​x​ k​​, ​x​ k+1​​]​​. For instance, ​​[​x​ 1​​, ​x​ 2​​]​​ represents the set of education ranks corresponding 
to the lowest education level in the data.

Our goal is to estimate ​Y​(x  =  i)​​ for some ​i​ (e.g., ​E​(y | x  =  10)​​ is the survival 
rate at the tenth percentile), or ​E​(y | x  ∈ ​ [a, b]​)​​ (e.g., ​E​(y | x  ∈ ​ [0, 10]​)​​ is the aver-
age survival rate in the least educated 10 percent).14 Define the expected value of ​y​ 
in bin ​k​ as

	​​ r​ k​​  ≔  E​(y | x  ∈ ​ [​x​ k​​, ​x​ k+1​​]​)​.​

Thus, ​​r​ 1​​​ is the average survival rate for people in the lowest education bin, e.g., 
high-school dropouts.15

Because ​x​ represents education ranks, ranks are uniform by construction:16

(Condition U)	​ x  ∼  U​(0, 100)​.​

We formalize the monotonicity assumption:

(Assumption M)	​ E​(y | x  =  i)​ is weakly increasing in i.​

Restate the following assumptions from Manski and Tamer (2002):

(Assumption I)	 If ​x​ is observed to lie in bin ​k​, then ​P​(x  ∈ ​ [​x​ k​​, ​x​ k+1​​]​)​  =  1.​

(Assumption MI)	� If ​x​ is observed to lie in bin ​k​, then ​E​(y | x, ​x​ k​​, ​x​ k+1​​)​  =  
E​(y | x)​.​

Assumptions I and MI are regularity conditions about interval censoring. 
Assumption I yields that, if ​x​ is interval censored, it truly lies within its given 
bin, and assumption MI states that the fact of interval censoring yields no additional 
information about ​x​.17

From Manski and Tamer (2002), we have:

(Manski-Tamer bounds)	​​ r​ k−1​​  ≤  E​(y | x)​  ≤ ​ r​ k+1​​​ .

13 For consistency with the literature (Manski and Tamer 2002), we frame the problem in terms of the survival 
rate, which is monotonically increasing in education rank, rather than the mortality rate, which is decreasing in rank.

14 Note that ​a​ and ​b​ need not correspond to points ​​x​ k​​​ that demarcate bins.
15 In the case of survival rates, let ​​r​ 0​​  =  0​ and ​​r​ K+1​​  =  1​; these are the upper and lower bounds for the 

well-defined survival probability.
16 We label U as a “condition” rather than an “assumption” because it is guaranteed to hold with ranks.
17 These always hold in our case, because all data are interval censored. We label them as assumptions for con-

sistency with Manski and Tamer (2002).
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Intuitively, with no information on the distribution of the conditioning variable, 
the CEF is sharply bounded by its mean value in the prior and subsequent bin. 
Recognizing the uniform distribution of ranks yields the following proposition.

PROPOSITION 1: Let ​x​ be in bin ​k​. Under Condition U and Assumptions M, I, and 
MI (Manski and Tamer 2002), and without additional information, the following 
bounds on ​E​(y | x)​​ are sharp:

	​​
{

​ 
​r​ k−1​​  ≤  E​(y | x)​  ≤ ​   1 _ ​x​ k+1​​ − x ​ ​(​(​x​ k+1​​ − ​x​ k​​)​ ​r​ k​​ − ​(x − ​x​ k​​)​ ​r​ k−1​​)​,

​ 
x  < ​ x​ k​ 

⁎​
​      

​  1 _ x − ​x​ k​​ ​​(​(​x​ k+1​​ − ​x​ k​​)​ ​r​ k​​ − ​(​x​ k+1​​ − x)​ ​r​ k+1​​)​  ≤  E​(y | x)​  ≤ ​ r​ k+1​​,
​ 

x  ≥ ​ x​ k​ 
⁎​
​​​

where

	​​ x​ k​ 
⁎​  = ​ 

​x​ k+1​​ ​r​ k+1​​ − ​(​x​ k+1​​ − ​x​ k​​)​ ​r​ k​​ − ​x​ k​​ ​r​ k−1​​
   ____________________________  ​r​ k+1​​ − ​r​ k−1​​ ​ .​

We refer to these as NRA bounds; the proof is in online Appendix Section C.1. 
Figure 3 shows the Manski and Tamer (2002) bounds and the NRA bounds on 
the mortality function above describing women aged 50–54 in 2018. The NRA 
bounds, which use the distribution of the data, are substantially tighter than the 
Manski-Tamer bounds.

In online Appendix Section C.1, we generalize Proposition 1 to the case with an 
arbitrary (but known) conditioning distribution. This generalization may be useful in 
settings where variables are commonly modeled with parametric distributions. For 
instance, in a setting with interval-censored income, this method could be applied  
under the assumption of a log-normal or Pareto income distribution. Online  
Appendix  Section C.1 describes an additional proposition providing analytical 
bounds on the average value of the CEF between percentiles ​a​ and ​b​, which we call ​​
μ​ a​ 

b​  =  E​(y | x  ∈ ​ [a, b]​)​​ for interval-censored ​x​.
As demonstrated in Figure 2, bounds on percentile ranges can be very tight. An 

important case is given by ​​μ​ a′​ 
b′​  =  E​(y | x  ∈ ​ [ a′, b′ ]​)​​ where ​a′​ and ​b′​ are particular 

rank boundaries in the education data (i.e., they correspond to ​​x​ k​​​ for some ​k​). In that 
case, ​​μ​ a′​ 

b′​​ can be point identified; it is exactly the value of ​​r​ k​​​ in the observed bin (the 
bin mean), or the weighted average of the bin means across the bins that ​a′​ and ​b′​ 
span. In contrast, ​E​(y | x  =  i)​​ is not generically point identified at any value of ​i​.

Table 1 presents an illustrative comparison of bounds on ​E​(y | x  =  i)​​ and ​​μ​ a​ 
b​​ for 

different intervals. Bounds on ​​μ​ a​ 
b​​ are generally (but not universally) tighter than 

bounds on ​E​(y | x  =  i)​​, and in some cases they are much tighter. Bounds on ​​μ​ a​ 
b​​ 

are tightest when ​a​ and ​b​ are close to bin boundaries in the data; we use this fact to 
select the objects of our analysis in the results below.18

18 For instance, in our context, ​​μ​ 0​ 
10​​ can be tightly bounded for most groups in most years, but ​​μ​ 0​ 

25​​ cannot. This is 
a limitation of the information contained in the data; if an analyst views ​​μ​ 0​ 

25​​ as a much more important object than ​​
μ​ 0​ 

10​​, they can tighten bounds on the mortality function by making additional structural assumptions (see below).
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C. A Numerical Framework for Arbitrary Constraints

An advantage of the partial identification approach is that we can transparently 
leverage plausible structural assumptions to obtain tighter bounds. For cases where 
analytical solutions may be unavailable, we develop a numerical optimization 
framework for calculating ​E​(y | x)​​ and other functions of the CEF. The numerical 
optimization generates identical results to Proposition 1 under Assumptions 1 and 2 
only, but allows us to impose arbitrary additional structural constraints. In particular, 
we consider a constraint on the curvature of the CEF, which prevents large discrete 
changes in the level or slope of the CEF at a single point in the rank distribution.

Figure 3. Change in Total Mortality of US Women, Age 50–54  
Bounds on Conditional Expectation Functions

Notes: Figure 3 shows bounds on the conditional expectation function of mortality as a function of latent educa-
tional rank. The sample consists of US women aged 50–54; mortality is measured in deaths per 100,000 women. 
The points in the graph show the mean education rank and mortality in each year for individuals with (i) less than 
high school; (ii) high school; (iii) some college; and (iv) a B.A. or higher. The curves show the bounds on expected 
mortality at each latent parent rank (​E​(y | x  =  i)​​ in the text). The outer (blue) bounds are calculated following 
Manski and Tamer (2002). In the bottom bin, the blue bounds are truncated at 2,000 for visual clarity but actu-
ally extend to 100,000 (since the procedure cannot reject a mortality rate of 1 up to the first bin cut). The middle 
(red) bounds are calculated following our method with unrestricted curvature. The tightest (gray) bounds are cal-
culated restricting the curvature to 3 percent of mean mortality across every percentile bin (2 times the largest cur-
vature found in US income rank-rank data (Chetty et al. 2016)). Education rank is measured relative to the set of 
all women aged 50–54. 

Source: NCHS
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The numerical framework identifies bounds on a target parameter (e.g.,  
​E​(y | x  =  i)​​ or ​E​(y | x  ∈ ​ [a, b]​)​​) by identifying a pair of CEFs which respectively 
maximize and minimize that parameter, subject to matching the observed bin means 
in the data and meeting a set of restrictions, like a curvature constraint or monotonic-
ity restriction. The framework is very flexible: arbitrary assumptions and outcome 
measures can be considered. The numerical optimization approach is described in 
online Appendix Section C.2.

Our main results below use the numerical optimization, imposing a structural 
assumption that the second derivative of the underlying CEF cannot exceed some 
constant ​​C 

–
 ​​. This curvature constraint prevents marginal changes in the latent edu-

cation rank from being associated with discrete jumps or kinks in the CEF. The 
intuition for this assumption is that a marginal increase in education rank should not 
yield a discrete benefit for health.19 Naturally, adding structural assumptions yields 

19 Alternatively, we can allow sharp kinks or jumps in the mortality function at ranks corresponding to major 
education bin boundaries, such as high school completion. This would be motivated by the possibility of sheep-
skin effects (Hungerford and Solon 1987), wherein completing high school (say) gives a discrete benefit for  

Table 1—Bounds on Mortality throughout the Education Rank Distribution,  
50–54-Year-Old Women, All Races

Statistic
Monotonicity only ​

(​C 
–
 ​  =  ∞)​

Curvature only  
​(​C 

–
 ​  =  3)​

Monotonicity and 
curvature ​​C 

–
 ​  =  3​

Panel A. 1992–1994
Y (x  =  10): first quintile median [455.9, 682.1] [343.3, 793.8] [456.1, 614.7]
Y (x  =  25): bottom half median [427.7, 587.2] [0.0, 1,163.1] [436.9, 586.7]
Y (x  =  8): median  ≤  high school (1992–94) [455.9, 738.0] [453.1, 726.2] [485.9, 638.8]
Y (x  =  4): median  ≤  high school (2016–18) [455.9, 1,013.2] [263.6, 972.2] [573.1, 730.5]

​​µ​ 0​ 
20​​: first quintile mean [570.2, 587.2] [539.0, 607.1] [567.6, 586.2]

​​µ​ 0​ 
50​​: bottom half mean [501.6, 530.7] [431.3, 582.1] [504.3, 529.5]

​​µ​ 0​ 
16​​: mean  ≤  high school (1992–94) [587.2, 598.7] [585.3, 595.2] [588.1, 595.1]

​​µ​ 0​ 
8​​: mean  ≤  high school (2016–18) [587.2, 741.5] [259.7, 1,041.2] [587.5, 725.6]

Panel B. 2016–2018
Y (x  =  10): first quintile median [516.0, 799.9] [284.9, 1,074.7] [534.3, 799.8]
Y (x  =  25): bottom half median [318.5, 685.4] [208.2, 775.5] [349.0, 600.5]
Y (x  =  8): median  ≤  high school (1992–94) [535.3, 799.9] [417.0, 1,009.8] [535.4, 799.8]
Y (x  =  4): median  ≤  high school (2016–18) [535.3, 1,046.3] [737.3, 831.1] [733.8, 816.3]

​​µ​ 0​ 
20​​: first quintile mean [640.1, 799.9] [476.9, 903.0] [641.2, 783.0]

​​µ​ 0​ 
50​​: bottom half mean [520.8, 570.1] [455.5, 553.0] [521.3, 551.2]

​​µ​ 0​ 
16​​: mean  ≤  high school (1992–94) [666.2, 799.9] [551.7, 952.2] [667.7, 793.0]

​​µ​ 0​ 
8​​: mean  ≤  high school (2016–18) [797.2, 799.9] [799.9, 799.9] [799.9, 799.9]

Notes: The table shows bounds on mortality in 1992–94 (panel A) and 2016–2018 (panel B) at various ranks or 
rank ranges in the education distribution. The notation ​Y​(x  =  i)​  =  E​(y | x  =  i)​​ describes mortality at education 
percentile ​i​, and ​​μ​ a​ 

b​​ describes average mortality between education percentiles ​a​ and ​b​. ​​ 
_

 C ​​ is the maximum percent-
age change in mortality function curvature allowed in any one percentile that does not correspond to an education 
bin boundary. 

Sources: ACS, CPS, and NCHS
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(weakly) tighter bounds. Figure  3 shows the effect of adding the curvature con-
straint to bounds on mortality of the sample group above; Table 1 shows the effect 
on mortality at various points and ranges of the education distribution.

While we impose the curvature constraint in our primary results, our findings are 
robust to imposing a weaker curvature constraint or none at all (online Appendix 
Section D). This highlights a key advantage of the partial identification approach: 
we can clearly present how each assumption affects the bounds.

Our publicly available code permits the researcher to apply a flexible set of struc-
tural assumptions. Different assumptions may be more or less plausible in different 
applications; the code allows the researcher to adjust these assumptions depending 
on the context.

D. Illustrating the Bias in Naïve Mortality Estimates

Figure 4 presents an illustrative comparison of the difference between naïve 
estimates of mortality change (dots) at education levels with bounded estimates 
of mortality change (lines) at constant education percentiles, i.e., ​​μ​ a​ 

b​​. The graph 
plots mortality rates for women aged 50–54 with less than a high-school degree 
(panel A) and with a high-school degree (panel B), showing percentage changes 
from 1992–1994 through 2016–2018.20

Panel A shows ​​μ​ 0​ 
17​​ (i.e., the bottom 17 percent), and panel B shows ​​μ​ 17​ 

60​​ (i.e., the 
women between ranks 17–60 in the own-gender education distribution). We choose 
these ranks because they are approximately the share of women in 1992–1994 with 
less than a high-school degree or exactly a high school degree, allowing the bounds 
to be very tight in the starting period.

The naïve estimate of mortality change for high school dropouts in this  
age-gender group is 36 percent. The comparable constant percentile estimates are 
bounded between 13 percent and 34 percent. The naïve estimate is thus unambigu-
ously biased upward, but it is close to the upper bound on mortality change.

The bias in the high school completer group is substantial and reverses the sign 
of mortality change. Here, the naïve analysis suggests that mortality has risen 
by 17 percent from 1992–1994 to 2016–2018. Holding ranks fixed, however, we 
conclude that mortality has in fact fallen by 5–14 percent in percentiles correspond-
ing to high school in 1992–1994.

Online Appendix Figure A2 shows similar graphs split by race and gender. The 
bias in the naïve estimates depends on the mortality-education gradient and the mag-
nitude of the shift in bin boundaries. The examples above show that the bias can 
vary, even within the same age-gender group. There is no simple rule of thumb for 
adjusting naïve estimates, but our paper provides a measure that corrects for the shift 
in the education distribution.

health. Note that sheepskin effects would only affect mortality through the causal effect of education on health 
(including through any mediating channel like income); any part of the relationship between socioeconomic status 
and mortality that is not driven by education would not be affected by sheepskin effects. We show below that allow-
ing for these effects does not widen the bounds appreciably.

20 Note that women of all races/ethnicities are pooled in this example, so the point estimates of mortality change 
are not directly comparable to the race-specific estimates in the results section.
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E. Comparison with Alternative Methods of Correcting for Selection Bias

We are aware of three approaches that other researchers have taken when faced 
with this selection problem (other than ignoring it completely). First, researchers 
have reassigned individuals across bins at random to obtain constant percentile 
mortality estimates (Meara, Richards, and Cutler 2008; Bound et al. 2015; Hendi 
2015; Leive and Ruhm 2021)—for instance, reassigning high school graduates to 
the dropout bin. This approach implicitly implies that the CEF of mortality given 
education rank is a highly discrete step function with constant mortality in each bin.

This function is unlikely to be a plausible description of reality for several  
reasons. First, this function implies enormous sheepskin effects in education, because 
it suggests that the individual who just barely completed high school (percentile 8.0 
for 50–54-year-old women in 2016–2018) has far lower mortality than the individ-
ual who was right at the margin of completing high school but then dropped out 
(percentile 7.9). Second, it implies that the high school completer right at the margin 
of dropping out (percentile 8.0) has the same expected mortality as the high school 
completer right at the margin of going on to college (percentile 36.9). A standard 
human capital model rejects this function: individuals at the margin of completing 
college would be expected to have higher socioeconomic status than those at the 
margin of dropping out, and thus lower mortality risk.

Moreover, the implicit assumption of this step function can introduce downward 
bias in mortality change estimates. To construct mortality in a fixed percentile range 
at the bottom of the distribution, the researcher increasingly adds randomly-selected 
high schoolers over time (because the percentile threshold for high school is falling 
as education rises). But a randomly chosen high schooler likely has lower average 

Figure 4. Changes in US Mortality, Women Age 50–54, 1992–1994 to 2016–2018:  
NaÏve and Constant Rank Interval Estimates

Notes: Figure  4 shows mortality changes for 50–54-year-old women from 1992–1994 to 2016–2018 (all races  
combined), calculated under different methods. The points show unadjusted estimates for women at constant educa-
tion levels—dropouts in panel A and high school graduates in panel B. Both of these population groups have shrunk 
as proportions of the population during the sample period. The vertical bars show bounds on mortality change in 
constant rank bins—ranks 0–17 in panel A and ranks 17–60 in panel B. These ranks are chosen because they are 
close to the share of women in 1992–1994 with less than a high school degree or exactly a high school degree, 
allowing the bounds to be very tight in the starting period.
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mortality than a high schooler who is at the margin of dropping out. This approach 
thus leads to underestimates of mortality change in the least educated group.

This step function is the edge case in the NRA bounds, if we permit discrete 
jumps in the mortality CEF at education boundaries (as in online Appendix Section 
D). Our partial identification strategy thus accommodates the approaches of this 
prior work, but also permits a range of more realistic CEFs that would reject this 
function.

Second, Cutler et al. (2011) reassign individuals across education bins based on 
additional data. For instance, to reassign college completers to high school, they use 
a regression approach to reassign the individuals who would be most likely to have 
been high school completers in an earlier time period, based on age, region, marital 
status, and income. This approach is an improvement over the random reassignment 
used in the other papers above, but is not available in vital statistics data which 
report few markers of socioeconomic status other than race and education.

Finally, researchers have avoided the problem of selection bias by focusing on 
cohorts, subgroups or sample periods where education levels have not changed 
very much, such as Case and Deaton (2015, 2017). While valid, this strategy must 
constrain analysis to subgroups for whom education levels have not changed sub-
stantially. In many cases, researchers would like to study groups like high-school 
dropouts where relative ranks have changed over time. Our methods allow us to 
study such groups—and indeed, we show that disaggregating the least educated 
is important for understanding US mortality change. Second, it is not clear when 
education levels have changed “too much” such that selection bias becomes an 
important concern. Our approach provides a principled way of quantifying the pos-
sible selection bias. If the bias is small, then the qualitative conclusions may be 
unchanged from a naïve approach. Online Appendix Section C.3 examines the sim-
ilarities and differences between the results that arise from the use of these different 
methodological choices in the prior literature.

III.  Results

A. Applying the Methodology

We begin by noting some details of the application of NRA bounds (Section II) 
to our specific mortality setting.

Selecting a Curvature Constraint.—Our primary results are computed numeri-
cally, under the assumptions of monotonicity and constrained curvature. To choose a 
conservative curvature constraint, we require the curvature to be less than 50 percent 
higher than the largest value of the curvature of the US income rank-mortality func-
tion reported by Chetty et al. (2016) (online Appendix Section C.2).21

21 To generate a comparable ​​C 
–
 ​​ across all age-year-gender CEFs, we construct a “normalized” ​​C 

–
 ​​ which is the 

absolute value of the second derivative for the CEF, divided by the mean across all percentiles. This procedure 
accounts for the potential concern that, e.g., CEFs with higher mortality (for instance, in older groups) may have 
larger (unnormalized) ​​C 

–
 ​​ without having larger curvature.
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Choosing Percentile Ranges.—Mortality can be most tightly bounded in rank 
intervals that are close to rank bin boundaries in the data. We select percentile bins 
for analysis by matching the education levels of 50–54-year-olds in 2003, a group 
that is approximately the middle cohort in our sample and an age group emphasized 
by the prior literature.22 We calculate mortality for the following four education 
groups: (i) the bottom 10 percent (the share of the age 50–54 population who were 
high school dropouts in 2003); (ii) percentiles 10 to 45 (those with high school 
degrees only in 2003); (iii) percentiles 45 to 70 (2-year college degrees in 2003); 
and (iv) the top 30 percent (Bachelor’s degrees or higher in 2003). Mortality esti-
mates in education quartiles or deciles would be useful, but given the existing rank 
bin boundaries in the data, they cannot be bounded as tightly and are thus less infor-
mative. We do not present these, but they can be readily calculated from the shared 
code and data. Because the data include the universe of deaths and statistical uncer-
tainty regarding the population totals is very small, we follow the previous literature 
in omitting confidence intervals.

Own-Gender, Across-Race Ranks.—As in Chetty et al. (2016), we rank men and 
women in each age-year group against members of their own gender, estimating 
mortality for a given percentile group of men or women. For instance, when we 
examine the bottom 10 percent of the education distribution, we mean “the least 
educated 10 percent of women,” rather than “women in the bottom 10 percent of 
the entire population education distribution.” We chose own-gender reference points 
because (i) women’s and men’s labor market opportunities and choices are often 
different, and (ii) women and men often share households and incomes, making 
population ranks misleading. We construct ranks across all racial groups (including 
other races, e.g., Hispanics, that we do not analyze in the paper).

Note that our method assumes that latent ranks are uniformly distributed within 
education rank bins; this assumption does not necessarily hold within racial groups. 
For instance, among the bottom 10 percent of women, the education ranks of White 
women (ranked against all women) may not be uniform. The assumption of unifor-
mity is not integral to our approach; the analytical formulas we provide permit the 
imposition of arbitrary parametric assumptions about the ranks. In Section IIIE, we 
provide several pieces of evidence that the uniformity assumption does not bias our 
results on mortality changes. For parsimony, we therefore proceed with the assump-
tion of uniformity but acknowledge that it does not hold exactly.

We present an alternative modeling choice that guarantees the assumption holds: 
in online Appendix Section D, we present results when we generate education ranks 
within own-race and own-gender groups. The advantage of the own-race approach 
is that reranking people within race and gender recovers uniformity of ranks within 
race-gender cells, by construction. The disadvantage is that doing so departs from 
the convention in the literature of comparing outcomes among all people within 
each gender, rather than within each race-gender group.

22 For any other age group, a different set of percentile bins might yield tighter bounds, but we chose the same 
percentile bins for all groups to maximize comparability.
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Nonmonotonicity.—For a small number of population subgroups, we do not 
observe monotonicity in the data. In the majority of these cases, the mortality rate in 
the higher education group is within 5 percent of that in the lower education group, 
so the monotonicity violation is not substantive in comparison with the width of the 
bounds. For Black cohorts over the age of 55 in 1992–1994, there are more substan-
tial violations: high school graduates often have higher mortality than dropouts, and 
B.A. recipients often have higher mortality than individuals with some college. Such 
nonmonotonic means are isolated to the oldest Black cohorts.23

Because our constrained optimization imposes monotonic CEFs on these groups, 
we may overstate health improvements for the oldest Black age groups, because 
monotonicity makes mortality among dropouts look worse for these cohorts in 
the period 1992–1994. Given that our primary finding is divergence by education 
group, allowing for nonmonotonic mortality among older Black cohorts would 
only strengthen our results. We also show in online Appendix Section D that all 
our results are robust if we loosen either the monotonicity or constrained curvature 
assumptions.

B. Unadjusted Mortality Changes by Education Levels, Ages 50–54

Figure 1 presents the raw data for 50–54-year-olds in 3-year bins, showing total 
mortality (deaths / 100,000) from 1992–1994 to 2016–2018, separately for each 
education level and by race and gender.

The four groups of points on each graph represent individuals with (i) less than 
high school education; (ii) high school education; (iii) some college; and (iv) a 
Bachelor’s degree or higher. The mean education percentile for individuals in a 
given education category is plotted on the ​x​-axis. In 1992–1994, 17.4 percent of 
women aged 50–54 had less than a high school education. The average percentile 
rank for someone in this group is 17.4 / 2  =  8.7; mortality for this group is there-
fore plotted (with a Black triangle in panel A) at 8.7 on the ​x-​axis. In 2016–2018, 
8.0 percent of women had less than a high school education; their mean education 
percentile was 4.0 (yellow square). Intermediate points show the transition path 
between these years.

Among White women (panel A), 50–54-year-old high school dropouts had mor-
tality rates 161  percent higher in 2016–2018 than in 1992–1994, suggesting an 
annualized mortality increase of 4.1  percent per year. Unadjusted mortality rose 
38  percent for 50–54-year-old high-school-educated White women, rose 11  per-
cent for women with some college, and fell by 35 percent for White women with 
Bachelor degrees or higher. Panels B through D present unadjusted estimates for 
White men, Black women, and Black men.

The points systematically shift to the left over time, because education for all 
race and gender groups rose steadily over the sample period. The decreasing aver-
age rank over time implies that unadjusted mortality changes at given education 
levels are biased upward by selection (Dowd and Hamoudi 2014; Bound et  al.  

23 This pattern could arise from some form of positive selection, such as survival of the 1980s crime waves or 
HIV epidemic. Examination of this hypothesis is beyond the scope of this study.
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2015; Currie 2018). The next section adjusts these estimates for changes in the size 
and relative rank of each group by studying constant percentile education groups 
rather than constant levels of education.

C. Mortality Changes in Constant Education Percentile Bins, Ages 50–54

We now turn to estimates of mortality for the same age group in constant per-
centile bins, which are displayed in Figure 5.24 The top-left panel shows mortal-
ity rates for White women, with one series for each education percentile group. 
Mortality among the least educated 10 percent rose steadily from [​614​, ​738​] deaths 
per 100,000 in 1992–1994 to over ​1,475​ in 2016–2018, an increase of ​100​–​150​ per-
cent, or about 2.9–3.9 percent per year. As expected, this is a smaller increase than 
the unadjusted mortality change shown in Figure 1; the original point estimate for 
dropouts is outside the bounds for the constant rank group, and the bias in the naïve 
estimate could be as large as 61 percent. However, even the lower bound on mortal-
ity change (​+ 100​%) implies a stark increase in mortality, and a change much higher 
than that in the next constant rank group. In percentiles 10–45, White women’s mor-
tality change is bounded between ​​[− 6%, 19%]​​. Among the most educated 30 per-
cent, White women’s mortality change was bounded between ​​[− 45%, − 36%]​​, an 
annualized decline of about 2 percent per year.

Turning to White men, we find a similar divergence of the least educated 10 per-
cent. Mortality increased by [36%, 62%] in the bottom 10 percent, while the group 
from percentiles 10–45 saw mortality changes in ​​[− 6%, 3%]​​. White men in the top 
30 percent experienced mortality declines of at least 43 percent. As above, the naïve 
estimates from Section IIIB are outside of these bounds, but they are not far from 
the upper bound estimates.

The remaining panels of Figure  5 show estimates for 50–54-year-old Black 
women and men, respectively. Mortality rates among Blacks also diverged by edu-
cation group, but less so than among Whites. Among 50–54-year-old Black women, 
mortality rose by 34–41 percent for the bottom 10 percent, but declined among all 
groups in the top 90  percent. For Black men aged 50–54, mortality change was 
close to zero in the bottom 10 percent but declined by at least 30 percent in all other 
groups.

D. Constant Education Percentile Changes in Mortality at Other Ages

This subsection expands the analysis to all age groups and presents our pri-
mary results. Figure 6 shows bounds on mortality change from 1992–1994 to  

24 The four constant education percentile groups correspond to education percentile bins in 2003. To obtain 
bounds on mortality changes when mortality in each year is interval-censored, we first estimate bounds on total 
mortality in 1992–1994 and 2016–2018, respectively denoted ​​[​t​ 2016​ 

l  ​, ​t​ 2016​ 
u  ​]​​ and ​​[​t​ 1992​ 

l  ​, ​t​ 1992​ 
u  ​]​​. We obtain mortality 

changes in percent terms as

	​ lower bound on mortality change  =  100 × ​(​t​ 2016​ 
l  ​ / ​t​ 1992​ 

u  ​)​​

	​ upper bound on mortality change  =  100 × ​(​t​ 2016​ 
u  ​ / ​t​ 1992​ 

l  ​)​​.
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2016–2018, separated by race, gender, age bin, and the four constant education per-
centile categories described above. We draw attention to three findings.

First, the mortality increases among White men and women (panels A and B 
of Figure  6) are principally driven by the bottom 10  percent. Trends in mortal-
ity rates among White men and women of all ages are similar to the trends for 
50–54-year-olds discussed in Section IIIC. Among percentiles 0–10, White men and 
women experienced large mortality increases—larger than 50 percent for most age 
groups.

In education percentiles 10–45, mortality is largely flat or declining among 
Whites over the age of 50. At younger ages, trends are stark, paralleling those in the 
bottom ten percentiles: mortality has risen 30–61 percent among 25-year-old White 
men and 73–116 percent among similarly aged White women. However, since most 
deaths occur at older ages, the all-age death rate in percentiles 10–45 is relatively flat 
among Whites. While we lack precision for percentiles 45–70, we observe decisive 
declines in mortality in the top 30 percentiles of the education distribution for both 
men and women.

Second, we observe divergence of mortality by education among Black men and 
women, but without the large rise in mortality in the bottom 10 percent (panels C 

Figure 5. All-Cause Mortality Change in Constant Education Percentiles:  
Age 50–54, 1992–1994 to 2016–2018

Notes: “White” refers to non-Hispanic White and “Black” to non-Hispanic Black. Each interval represents the 
bounded set containing the number of deaths per 100,000 people in a given time period, among people in the educa-
tion percentiles specified in the legend. The education percentiles correspond to the percentile bins describing four 
levels of education for the median age group in 2003: No High School, High School, Some College, and a B.A. or 
Higher. Bounds are computed as described in Section II. The sample consists of people ages 50–54. 

Sources: ACS, CPS, NCHS
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and D of Figure 6). In particular, all percentiles except 0–10 exhibited substantial 
mortality reductions among Blacks, while mortality change hovered around zero in 
the bottom 10 percent. Some middle-aged Black cohorts in the bottom 10 percent 

Figure 6. Mortality Change in Constant Education Percentiles (1992–1994 to 2016–2018, All Ages)
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Figure 6. Mortality Change in Constant Education Percentiles (1992–1994 to 2016–2018, All Ages) 
(continued )

Notes: The graph shows changes in mortality by age, sex, race, and constant percentile education bin. The vertical 
lines show the bounded set containing the percentage change in the mortality rate from 1992–1994 to 2016–2018 
for the given age group. Bounds are computed as described in Section II. 

Sources: ACS, CPS, NCHS
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saw mortality increases (especially Black women aged 40–59), while other ages 
saw only small positive mortality increases or reductions. Black men in the most 
educated 30 percent had the largest reductions in middle-age mortality out of all 
groups, closing some of the mortality gap with White men.

Third, we find that the proximate causes of these mortality changes vary substan-
tially by race and age. Figure 7 decomposes the mortality changes above into deaths 
from suicide, poisoning, and liver disease (what Case and Deaton 2017 call “deaths 
of despair,” orange bars) and all other deaths (black bars). We present the percent 
change in total deaths driven by each of the two causes, so that adding the two bars 
produces the total percentage mortality change (as displayed in Figure 6).

For example, consider the first group displayed in panel A: White women aged 
25–29 in the least educated 10 percent. Mortality from deaths of despair for this 
group increased by 616–750  percent. However, because they started from a low 
base, this change in deaths of despair mechanically caused total mortality to rise 
by 84–104 percent (the orange bar on the graph). Deaths from all causes other than 
despair increased by 30–55 percent for this group, causing total mortality to rise by 
27–48 percent (the black bar on the graph).25

25 More precisely, let total deaths in year ​y​ be in interval ​​[​t​ y​ 
l​, ​t​ y​ 

u​]​​. Let deaths of despair ​d​ be in interval ​​[​d​ y​ 
l​, ​d​ y​ 

u​]​​ .  
Index years 2016–2018 and 1992–1994 by 2016 and 1992, respectively. The lower bound for the orange bar is 

Figure 7. Decomposition of Mortality Change from 1992–1994 to 2016–2018:  
Contribution of Deaths of Despair
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Among White men and White women below 45, deaths of despair play an import-
ant role in driving overall mortality increases. In particular, the gains in deaths of 
despair are responsible for the majority of the mortality increase of White men 
below 40. At older ages, deaths of despair are still rising but play a minor role in 
overall mortality increases. Deaths of despair are also rising in percentiles 45–70 at 
all ages for both White men and women, and for White men under 50 even in the 
highest educated group (albeit at much lower rates).

One way of summarizing these results is to aggregate mortality changes across all 
ages, though it masks some of the important heterogeneity and emphasizes changes 
at older ages where most deaths occur. To aggregate mortality rates across ages 
while holding constant the change in the population age distribution over time, 
we weight the age-specific mortality rates in the data with the standardized US 

given by

	​ lower bound  =  100 × ​(​d​ 2016​ 
l  ​ − ​d​ 1992​ 

u  ​)​ / ​t​ 1992​ 
u  ​,​

whereas the upper bound is given by

	​ upper bound  =  100 × ​(​d​ 2016​ 
u  ​ − ​d​ 1992​ 

l  ​)​ / ​t​ 1992​ 
l  ​.​

Mortality changes for other deaths are given similarly.

Figure 7. Decomposition of Mortality Change from 1992–1994 to 2016–2018:  
Contribution of Deaths of Despair
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population distribution for ages 25–69.26 Using these aggregates, Table 2 presents 
age-adjusted bounds on mortality change from 1992–1994 to 2016–2018 for each 
constant education percentile group.

The table highlights the substantial divergence of mortality rates between high 
and low education groups in all four gender and race groups. For Whites in the least 
educated 10 percent, mortality rose substantially, by 69–112 percent for women and 
47–67 percent for men. Among Blacks in the least educated 10 percent, mortality 
rose for women by 9–17 percent and was close to unchanged for men (−1 percent 
to +3 percent). For the most educated 30 percent of individuals across all race and 
gender groups, mortality rates fell by over 35 percent, with the largest gains for the 
most educated Black men.27

Online Appendix Table A2 shows the percent increase in deaths of despair, as 
well as heart disease, cancer, injuries and other causes for all sex/race groups, 
combining all ages. It is notable that among middle-aged Whites in the bottom 

26 The standardized US population distribution was obtained from https://seer.cancer.gov/stdpopulations/.
27 These numbers, along with mortality levels by age, education bin, race and sex for all groups are reported in 

the accompanying data files. As noted earlier, online Appendix Figure A1 plots these estimates against the naïve 
estimates of mortality change at four levels of education: dropouts, high school completion, some college, and B.A. 
or higher. We also disaggregate these over time, by race, in online Appendix Figure A2.
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Figure 7. Decomposition of Mortality Change from 1992–1994 to 2016–2018:  
Contribution of Deaths of Despair (continued )

https://seer.cancer.gov/stdpopulations/
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10 percent, mortality from cancer, heart disease, and other diseases all rose over the 
sample period.28

E. Robustness

Online Appendix D presents a range of robustness checks on the primary results. 
Online Appendix Section D.1 explores how the bounds change as the monotonicity 
restriction is loosened; for the least educated group, loosening monotonicity does 
not lead to dramatically different results because the empirical monotonicity across 
bins is so strong.

28 Note that in online Appendix Table A2, we show the percentage changes for each cause, while Figure 7 shows 
the contribution of deaths of despair to total mortality. For deaths of despair, the percentage changes are very large 
because they begin from a small base; but for many cohort groups, they contribute only a small amount to changes 
in total mortality.
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Figure 7. Decomposition of Mortality Change from 1992–94 to 2016–18:  
Contribution of Deaths of Despair (continued )

Notes: “White” refers to non-Hispanic White. The panels decompose the change in total mortality from 1992–1994 
to 2016–2018 into two parts: the change in total deaths driven by deaths of despair, and the change in total deaths 
driven by all other causes. Estimates are disaggregated by age, sex, race, and constant percentile education bin. The 
orange lines show bounds on the contribution to total mortality change driven by changes in deaths of despair. The 
value on the ​y-​axis is the amount that total mortality for each group would have changed if the rates of all deaths 
other than deaths of despair were unchanged. The black lines show the contribution to total mortality change driven 
by all causes of death other than deaths of despair. Deaths of despair are deaths from suicide, poisoning, and chronic 
liver disease. Bounds are computed using the set identification methods described in Section II. 

Sources: ACS, CPS, NCHS
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Online Appendix Section D.2 shows that results are robust to alternate assump-
tions on the bounding methodology. We show that results are similar when: (i) bin 
boundaries are based on education levels in 1992–1994; (ii) education percentiles 
are defined relative to members of the same race and gender, rather than just the 
same gender; (iii) we permit sheepskin effects in education (allowing the CEF to 
have discrete jumps at bin boundaries); and (iv) we remove the curvature constraint 
and permit CEFs with unconstrained curvature.

As noted above, defining education percentiles relative to the same race and gen-
der, as in (ii), guarantees that the uniformity assumption holds, so it is a strong 
confirmation that non-uniform distributions within each bin do not drive our results. 
We further probe this assumption in online Appendix Section D.3, where we demon-
strate that our findings cannot be explained by changes in the relative distribution of 
Black-White education ranks within education bins. Together, these imply that our 
assumption of uniform ranks within bins for each race group is not leading to bias.

Division Bias.—One concern with our mortality estimates may be that they are 
calculated by dividing the number of deaths (from NCHS data) by the population 
(from the CPS). If ethnic status or education is misreported in one of the two data-
sets, our mortality estimates could be biased. Note that for our mortality change 
estimates to be biased, the extent of misreporting would have to change differen-
tially across datasets. We show that the division bias from any such misreporting is 
unlikely to be large enough to spuriously generate the large changes in mortality that 
we find among the least educated Whites.

We would be most concerned if death records increasingly overstate the number 
of White high school dropouts among the deceased, and/or the CPS increasingly 
understates the population of White high school dropouts. Either of these situa-
tions would cause our mortality change estimates to be biased upward. One way 
that this could happen would be if individuals who are White increasingly report 
Hispanic identity in the CPS, but not in the death records.29 A second way would be 

29 Note that if Hispanics increasingly report as White, that would cause our mortality change estimates to be 
biased down (i.e., our reported estimates are conservative), because Hispanics generally have lower mortality than 
Whites.

Table 2—Age-Adjusted Changes in All-Cause Mortality by Education 
Percentile, 1992–94 to 2016–18

0–10th 10th–45th 45th–70th 70th–100th

White women (+77%, +111%) (−0%, +21%) (−39%, −4%) (−48%, −39%)
White men (+50%, +68%) (−6%, +5%) (−40%, −18%) (−52%, −45%)
Black women (+11%, +17%) (−28%, −21%) (−47%, −33%) (−55%, −51%)
Black men (−0%, +3%) (−33%, −29%) (−54%, −44%) (−67%, −64%)

Notes: “White” refers to non-Hispanic White and “Black” refers to non-Hispanic Black. The 
table shows the percent change in all-cause mortality, defined as total deaths in a year divided 
by population. To hold the population distribution constant, we weight the age-specific mor-
tality rates from the data with the standardized US population distribution for ages 25–69. We 
use age-specific mortality rates from each period, but a single set of weights for all periods.
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if individuals who are dropouts increasingly inflate their education when responding 
to the CPS (thus lowering the population count of dropouts), but their education 
is correctly reported on death certificates.30 However, if there is a constant rate of 
differential misreporting between CPS and death certificates, our change estimates 
are not biased.

We address division bias in three ways. First, in online Appendix Section D.4, 
we show that measurement error in ethnicity or changes in reporting patterns of 
Hispanic identity cannot explain our results. We simulate systematic measurement 
error in Hispanic identity and show that our results are sustained even with highly 
implausible changes in patterns of Hispanic reporting. This exercise rules out that, 
say, a greater propensity among economically successful Hispanics to identify as 
White could yield our results.

Second, in online Appendix  Section D.5, we bound the error that could arise 
from false reporting of education or ethnicity in the CPS by examining the size of 
synthetic CPS dropout cohorts over time. If CPS respondents increasingly overre-
port their education, or if White respondents are increasingly reporting themselves 
as Hispanic, then the synthetic cohort of non-Hispanic White dropouts will shrink 
in size more than can be explained by the death rate and the rate of continuing adult 
education. We show that under the worst-case assumptions for our hypothesis, mis-
reporting of education in the CPS could potentially account for less than 8 percent 
of the mortality change of the least educated White women in the 1950–1954 birth 
cohort and less than 24 percent in the 1960–1964 birth cohort. The worst-case bias 
for White men and at higher education groups is even smaller. As we discuss in 
online Appendix Section D.5, this worst-case bias scenario is very unlikely to be 
true; it is therefore implausible that erroneous population counts in the CPS are 
driving our findings.

Third, in online Appendix Section D.6, we calculate mortality rates and other 
health measures using the NHIS (Centers for Disease Control and Prevention 1998–
2019). The NHIS makes it possible to measure mortality in a sample of individuals 
without any division bias, because survey respondents are followed up for many 
years and any deaths are recorded. The NHIS broadly supports the notion of diver-
gent outcomes between high-school dropouts and high-school completers (Hendi 
2015, 2017; Sasson 2016, 2017), but the very small samples of dropouts lead to very 
imprecise estimates.31

In online Appendix  Section D.6, we also examine self-reported health sta-
tus in the NHIS, which is measured more precisely than mortality. We find that 
self-reported health status declines more for White female dropouts than for 
White women with all higher levels of education, with the difference concentrated 
among 40–60 year olds—the same age group that had the highest differential mor-
tality change between dropouts and high school completers in our main analysis 

30 It is also possible that true Hispanic identity is decreasingly reported on death certificates, or that death 
certificates increasingly report dropout status either among dropouts or those with high school. We view these 
circumstances as less likely, but the tests below address them as well.

31 Hendi (2015) finds that mortality is not rising for the male dropouts in the NHIS. Our NHIS analysis is con-
sistent with Sasson (2017), who argues that the NHIS sample of White male dropouts is too small to distinguish 
between zero mortality change and our reported effects of 1.6–2.2 percent growth per year in the bottom 10 percent.
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(Figure  6). Among men, health changes are similar between dropouts and high 
school graduates for young men, but among older men, dropouts experience sub-
stantially more health deterioration than high school completers, again consistent 
with the results in Figure 6. Changes in self-reported health status are thus consis-
tent with our finding that mortality changes among Whites are driven by those in 
the least educated 10 percent.

Finally, in online Appendix  Section D.7, we replicate the analysis after pool-
ing dropouts and high school completers into a single education group. This elimi-
nates most of the division bias and misreporting concerns because: (i) the synthetic 
cohort analysis above shows that the size of the less than or equal to high school 
(LEHS) population in the CPS cannot be biased by more than 10 percent either 
for men or for women; and (ii) the group size is much larger, so a small amount of 
misreporting cannot substantially shift the population size and bias the estimated 
mortality rate. The disadvantage of pooling these groups is that we can no longer 
tightly bound mortality among the bottom 10 percent. However, we can decisively 
reject the hypothesis that mortality change among the bottom 45 percent of Whites 
is driven by selection alone. For cohorts under the age of 45, we continue to find 
that mortality rates in the bottom 45 percent of the education distribution have risen 
by more than 50  percent for White women and 25  percent for White men from 
1992–1994 to 2016–2018. These numbers are lower than the estimates for mortality 
increases in the bottom 10 percent in the main part of the paper, because they pool 
the high mortality increases among the bottom 10 percent with the smaller mortality 
increases among percentiles 10–45.

To conclude, while there is undoubtedly some measurement error in education 
and ethnicity in both the vital statistics and the CPS data, it is very unlikely that 
measurement error can explain the substantial increase in mortality among the least 
educated non-Hispanic Whites. It is worth noting that other measures of socioeco-
nomic status also have their limitations; for example, studies using income as a 
measure of socioeconomic status often exclude those reporting zero income, and do 
not consider all transfers or illicit income, which may be important at the bottom of 
the income distribution.

IV.  Conclusion

This paper makes two primary contributions. Methodologically, we introduce 
new bounds on conditional expectation functions with interval-censored condition-
ing data. Our approach is particularly useful for bounding CEFs with education 
data. In many cases, one wishes to present trends in a given outcome over time by 
education group (e.g., wages, fertility, or marriage rates over time for people with 
a BA), an analysis that is subject to similar concerns about selection raised in this 
paper. Our method addresses these concerns by making it feasible to track outcomes 
in constant education ranks over time.

The method is broadly applicable to other contexts as long as researchers are 
willing to assume some parametric distribution for conditioning data. Other set-
tings where it could be useful applied include the study of CEFs with top-coded or 
interval-censored income data, Likert scales, or bond ratings.
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Empirically, this paper studies US mortality change at different points in the edu-
cation distribution. The postwar era has been characterized by improving health and 
survival of nearly all demographic groups in all developed countries. Rising mor-
tality among White non-Hispanic Americans represents a major deviation from this 
trend, and understanding the factors behind this change is a central policy concern.

While there has been substantial interest in education as a risk factor for mortality 
change, the selection bias inherent in earlier estimates of mortality among the less 
educated has made it difficult to study. Our approach generates estimates of mor-
tality change in constant education percentiles that quantify the uncertainty from 
changing education bin boundaries over time. Our findings point to large increases 
in mortality for White men and women in the bottom 10 percent of the education 
distribution, indicating a public health crisis among the least educated.

Our findings reconcile several views previously expressed in the literature. We 
confirm that earlier estimates of mortality at constant levels of education did over-
state mortality increases due to selection bias. However, the mortality change due 
to selection bias is swamped by the actual mortality change at constant education 
percentiles. Death rates for the least educated have dramatically diverged from death 
rates of other groups in virtually all middle-age race and gender groups. These mor-
tality increases have a range of causes beyond the widely discussed increases in 
deaths of despair.

These findings are consistent with the mortality divergence across education 
groups from 1981 to 2000 (Meara, Richards, and Cutler 2008); we show that 
this divergence has continued through 2018 and cannot be explained by selection 
bias from rising education. Our findings also support the Case and Deaton (2015, 
2017) findings that rising middle-age mortality is concentrated among less edu-
cated Whites. But our analysis focuses on more disaggregated population subgroups 
where education levels have changed substantially over time (e.g., younger cohorts 
and women)—subgroups where unadjusted estimates were thought to be substan-
tially biased.

These results provide a new perspective to recent analyses of changing mortality 
at different percentiles in the income distribution (Cristia 2009, Chetty et al. 2016). 
Like the poor, the least educated experience a range of socioeconomic disadvantages, 
such as high unemployment, low insurance coverage, poor nutrition, and exposure 
to harmful environmental factors. Our estimates imply that recent middle-age mor-
tality increases among the least educated 10 percent are worse than those among the 
poorest 10 percent. This could be because low income is more transitory than low 
education or because education is a marker of early life disadvantage and reflects 
low socioeconomic status in the present as well as in past years.

To better understand the causes of these mortality increases, researchers have 
searched for factors that predict rising mortality (Cutler et  al. 2011; Case and 
Deaton 2017; Ruhm 2018). Pinpointing the causes of mortality increase will require 
taking into account the fact that education is a key predictor of mortality change and 
that the proximate drivers of mortality change differ substantially across different 
groups.



VOL. 14 NO. 4� 33NOVOSAD ET AL.: MORTALITY CHANGE AMONG LESS EDUCATED AMERICANS

REFERENCES

Aizer, Anna, and Janet Currie. 2014. “The Intergenerational Transmission of Inequality: Maternal 
Disadvantage and Health at Birth.” Science 344 (6186): 856–61.

American Council on Education. 1993–2014. GED Testing Program Statistical Reports. Washington, 
DC: American Council on Education. https://nces.ed.gov/programs/digest/d15/tables/dt15_219.60.
asp (accessed March 22, 2019).

Asher, Sam, Paul Novosad, and Charlie Rafkin. 2022. “Intergenerational Mobility in India: New Mea-
sures and Estimates across Time, Space, and Communities.” Unpublished.

Bertrand, Marianne, Patricia Cortés, Claudia Olivetti, and Jessica Pan. 2021. “Social Norms, Labour 
Market Opportunities, and the Marriage Gap between Skilled and Unskilled Women.” Review of 
Economic Studies 88 (4): 1936–78.

Bound, John, Arline T. Geronimus, Javier M. Rodriguez, and Timothy A. Waidmann. 2015. “Mea-
suring Recent Apparent Declines in Longevity: The Role of Increasing Educational Attainment.” 
Health Affairs 34 (12): 2167–73.

Card, David. 1999. “The Causal Effect of Education on Earnings.” In The Handbook of Labor Eco-
nomics, Vol. 3A, edited by Orley C. Ashenfelter and David Card, 1801–63. Amsterdam: Elsevier.

Case, Anne, and Angus Deaton. 2015. “Rising Morbidity and Mortality in Midlife among White 
Non-Hispanic Americans in the 21st Century.” Proceedings of the National Academy of Sciences 
112 (49): 15078–83.

Case, Anne, and Angus Deaton. 2017. “Mortality and Morbidity in the 21st Century.” Brookings Papers 
on Economic Activity 2017 (1): 397–476.

Centers for Disease Control and Prevention. 1998–2019. “National Health Interview Survey.” https://
www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm (accessed May 28, 2019).

Chetty, Raj, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy 
Narang. 2017. “The Fading American Dream: Trends in Absolute Income Mobility since 1940.” 
Science 356 (6336): 398–406.

Chetty, Raj, Michael Stepner, Sarah Abraham, Shelby Lin, Benjamin Scuderi, Nicholas Turner, 
Augustin Bergeron, and David Cutler. 2016. “The Association between Income and Life Expectancy 
in the United States, 2001–2014.” JAMA 315 (16): 1750–66.

Cristia, Julian P. 2009. “Rising Mortality and Life Expectancy Differentials by Lifetime Earnings in 
the United States.” Journal of Health Economics 28 (5): 984–95.

Currie, Janet M. 2018. “Inequality in Mortality over the Life Course: Why Things Are Not as Bad as 
You Think.” Contemporary Economic Policy 36 (1): 7–23.

Currie, Janet, and Hannes Schwandt. 2016a. “Inequality in Mortality Decreased among the Young 
While Increasing for Older Adults, 1990–2010.” Science 352 (6286): 708–12.

Currie, Janet, and Hannes Schwandt. 2016b. “Mortality Inequality: The Good News from a Coun-
ty-Level Approach.” Journal of Economic Perspectives 30 (2): 29–52.

Cutler, David M., Fabian Lange, Ellen Meara, Seth Richards-Shubik, and Christopher J. Ruhm. 
2011. “Rising Educational Gradients in Mortality: The Role of Behavioral Risk Factors.” Journal 
of Health Economics 30 (6): 1174–87.

Cutler, David, and Adriana Lleras-Muney. 2010a. “The Education Gradient in Old Age Disability.” 
In Research Findings in the Economics of Aging, edited by David A. Wise. Chicago: University of 
Chicago Press.

Cutler, David M., and Adriana Lleras-Muney. 2010b. “Understanding Differences in Health Behaviors 
by Education.” Journal of Health Economics 29 (1): 1–28.

Dowd, Jennifer B., and Amar Hamoudi. 2014. “Is Life Expectancy Really Falling for Groups of Low 
Socio-economic Status? Lagged Selection Bias and Artefactual Trends in Mortality.” International 
Journal of Epidemiology 43 (4): 983–88.

Feinstein, Alvan R., Daniel M. Sosin, and Carolyn K. Wells. 1985. “The Will Rogers Phenomenon: 
Stage Migration and New Diagnostic Techniques as a Source of Misleading Statistics for Survival 
in Cancer.” New England Journal of Medicine 312 (25): 1604–08.

Gelman, Andrew, and Jonathan Auerbach. 2016. “Age-Aggregation Bias in Mortality Trends.” Pro-
ceedings of the National Academy of Sciences 113 (7): E816–17.

Goldring, Thomas, Fabian Lange, and Seth Richards-Shubik. 2016. “Testing for Changes in the 
SES-Mortality Gradient When the Distribution of Education Changes Too.” Journal of Health Eco-
nomics 46: 120–30.

Greenwood, Jeremy, Nezih Guner, Georgi Kocharkov, and Cezar Santos. 2014. “Marry Your Like: 
Assortative Mating and Income Inequality.” American Economic Review 104 (5): 348–53.

https://nces.ed.gov/programs/digest/d15/tables/dt15_219.60.asp
https://nces.ed.gov/programs/digest/d15/tables/dt15_219.60.asp
https://www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm
https://www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjep.30.2.29&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1126%2Fscience.1251872&citationId=p_1
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fije%2Fdyu120&citationId=p_19
http://pubs.aeaweb.org/action/showLinks?crossref=10.1377%2Fhlthaff.2015.0481&citationId=p_5
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.104.5.348&citationId=p_23
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2009.06.003&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2011.06.009&citationId=p_16
http://pubs.aeaweb.org/action/showLinks?crossref=10.1056%2FNEJM198506203122504&citationId=p_20
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fcoep.12267&citationId=p_13
http://pubs.aeaweb.org/action/showLinks?crossref=10.1126%2Fscience.aal4617&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?crossref=10.1073%2Fpnas.1518393112&citationId=p_7
http://pubs.aeaweb.org/action/showLinks?crossref=10.1126%2Fscience.aaf1437&citationId=p_14
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2009.10.003&citationId=p_18
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2015.12.002&citationId=p_22
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frestud%2Frdaa066&citationId=p_4
http://pubs.aeaweb.org/action/showLinks?crossref=10.1001%2Fjama.2016.4226&citationId=p_11
http://pubs.aeaweb.org/action/showLinks?crossref=10.1353%2Feca.2017.0005&citationId=p_8


34	 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS� OCTOBER 2022

Hendi, Arun S. 2015. “Trends in US Life Expectancy Gradients: The Role of Changing Educational 
Composition.” International Journal of Epidemiology 44 (3): 946–55.

Hendi, Arun S. 2017. “Trends in Education-Specific Life Expectancy, Data Quality, and Shifting Edu-
cation Distributions: A Note on Recent Research.” Demography 54 (3): 1203–13.

Hungerford, Thomas, and Gary Solon. 1987. “Sheepskin Effects in the Returns to Education.” Review 
of Economics and Statistics 69 (1): 175–77.

Kochanek, Kenneth D., Elizabeth Arias, and Brigham A. Bastian. 2016. “The Effect of Changes in 
Selected Age-Specific Causes of Death on Non-Hispanic White Life Expectancy between 2000 and 
2014.” NCHS Data Brief 250: 1–8.

Leive, Adam A., and Christopher J. Ruhm. 2021. “Has Mortality Risen Disproportionately for the 
Least Educated?” Journal of Health Economics 79: 102494.

Mackenbach, Johan P., Vivian Bos, Otto Andersen, Mario Cardano, Giuseppe Costa, Seeromanie 
Harding, Alison Reid, Örjan Hemström, Tapani Valkonen, and Anton E. Kunst. 2003. “Widening 
Socioeconomic Inequalities in Mortality in Six Western European Countries.” International Jour-
nal of Epidemiology 32 (5): 830–37.

Manski, Charles F., and Elie Tamer. 2002. “Inference on Regressions with Interval Data on a Regressor 
or Outcome.” Econometrica 70 (2): 519–46.

Markides, Kyriakos S., and Karl Eschbach. 2005. “Aging, Migration, and Mortality: Current Status of 
Research on the Hispanic Paradox.” Journals of Gerontology: Series B 60 (2): 68–75.

Meara, Ellen R., Seth Richards, and David Cutler. 2008. “The Gap Gets Bigger: Changes in Mortality 
and Life Expectancy, by Education, 1981–2000.” Health Affairs 27 (2): 350–60.

National Center for Health Statistics. 1993–2019. “Mortality: All County.” https://www.cdc.gov/nchs/
index.htm (accessed May 28, 2019).

Novosad, Paul, Charlie Rafkin, and Sam Asher. 2022. “Replication data for: Mortality Change among 
Less Education Americans.” American Economic Association [publisher], Inter-university Consor-
tium for Political and Social Research [distributor]. https://doi.org/10.38886/E14796V1.

Olshansky, S. Jay, Toni Antonucci, Lisa Berkman, Robert H. Binstock, Axel Boersch-Supan, John T. 
Cacioppo, Bruce A. Carnes, et al. 2012. “Differences in Life Expectancy Due to Race and Educa-
tional Differences Are Widening, and Many May Not Catch Up.” Health Affairs 31 (8): 1803–13.

Pappas, Gregory, Susan Queen, Wilbur Hadden, and Gail Fisher. 1993. “The Increasing Disparity 
in Mortality between Socioeconomic Groups in the United States, 1960 and 1986.” New England 
Journal of Medicine 329 (2): 103–09.

Ruggles, Steven, Sarah Flood, Sophia Foster, Ronald Goeken, Jose Pacas, Megan Schouweiler, and 
Matthew Sobek. 2021. “IPUMS USA.” https://www.ipums.org (accessed September 19, 2017).

Ruhm, Christopher J. 2018. “Deaths of Despair or Drug Problems?” NBER Working Paper 24188.
Sasson, Isaac. 2016. “Trends in Life Expectancy and Lifespan Variation by Educational Attainment: 

United States, 1990–2010.” Demography 53 (2): 269–93.
Sasson, Isaac. 2017. “Reply to Trends in Education-Specific Life Expectancy, Data Quality, and Shift-

ing Education Distributions: A Note on Recent Research.” Demography 54 (3): 1215–19.
United States Census Bureau. 1993–2019a. “Current Population Survey.” https://ceprdata.org/cps-

uniform-data-extracts/march-cps-supplement/march-cps-data/ (accessed May 28, 2019).
United States Census Bureau. 2007–2019b. “American Communities Survey.” https://ceprdata.org/

acs-uniform-data-extracts/ (accessed May 8, 2020).

https://www.cdc.gov/nchs/index.htm
https://www.cdc.gov/nchs/index.htm
https://doi.org/10.38886/E14796V1
https://www.ipums.org
https://ceprdata.org/cps-uniform-data-extracts/march-cps-supplement/march-cps-data/
https://ceprdata.org/cps-uniform-data-extracts/march-cps-supplement/march-cps-data/
https://ceprdata.org/acs-uniform-data-extracts/
https://ceprdata.org/acs-uniform-data-extracts/
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2F1468-0262.00294&citationId=p_30
http://pubs.aeaweb.org/action/showLinks?crossref=10.1377%2Fhlthaff.2011.0746&citationId=p_35
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fije%2Fdyv062&citationId=p_24
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jhealeco.2021.102494&citationId=p_28
http://pubs.aeaweb.org/action/showLinks?crossref=10.1377%2Fhlthaff.27.2.350&citationId=p_32
http://pubs.aeaweb.org/action/showLinks?crossref=10.1056%2FNEJM199307083290207&citationId=p_36
http://pubs.aeaweb.org/action/showLinks?crossref=10.1007%2Fs13524-017-0583-1&citationId=p_40
http://pubs.aeaweb.org/action/showLinks?crossref=10.1007%2Fs13524-017-0574-2&citationId=p_25
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fije%2Fdyg209&citationId=p_29
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1937919&citationId=p_26

	Mortality Change among Less Educated Americans
	I. Data Sources
	II. Methods: Bounding Mortality in Constant Education Percentile Bins
	A. Assumptions
	B. Formalization of Bounds on the Interval-Censored CEF
	C. A Numerical Framework for Arbitrary Constraints
	D. Illustrating the Bias in Naïve Mortality Estimates
	E. Comparison with Alternative Methods of Correcting for Selection Bias

	III. Results
	A. Applying the Methodology
	B. Unadjusted Mortality Changes by Education Levels, Ages 50–54
	C. Mortality Changes in Constant Education Percentile Bins, Ages 50–54
	D. Constant Education Percentile Changes in Mortality at Other Ages
	E. Robustness

	IV. Conclusion
	REFERENCES


